

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Umwelt BAFU Hydrologie – Hydrologische Vorhersagen

Use of WaSiM within the Operational Flood Forecasting System of Switzerland Challenges and Current Developments

Karsten Jasper Federal Office for the Environment of Switzerland FOEN

- Hydrological forecasting at FOEN: history and challenges
 Use of WaSiM within the operational FOEN forecasting system: current and future developments
 WaSiM applications for three selected river basins in CH: Emme, Rhone and Alpenrhein
- Outlook: model requirements and possible improvements

Hydrological Forecasting at FOEN

• Until a few years ago the hydrological forecasting at FOEN was limited to the Swiss Rhine basin (focus on shipping, flood-protection, input for forecasting centres downstream).

=> No explicit legal basis to issue flood warnings!

Hydrological Forecasting at FOEN

• Change of policy after the catastrophic flood events in 2005 and 2007

Flood event in August 2005 with 6 flood fatalities (human lifes) and economic damage of more than 3 billion Swiss Francs

Flood event August 2005

Flood event August 2005

Development of damage 1972-2012 (taking inflation into account)

3

Hydrological Forecasting at FOEN

• Change of policy after the catastrophic flood events in 2005 and 2007

Start of the OWARNA project in 2008: objective: creation of organisational and professional basis for a national warning of natural disasters

- => Improvement of communication / coordination between federal and cantonal authorities
- => Development and improvement of jointly used information tools
- => Tasks for hydrological forecasting at FOEN:
 - Improvement of the actually used forecasting tools including hydrological models
 - Extension of the forecasting area to all Swiss river catchments

Extension of the hydrological forecasting area

Hydrological Switzerland: ca. 56'000 km²

HBV-Rhine model approach

- successful integration into the FOEN flood forecasting system (FEWS)
 => operationally used in 2007
- problems in hydrologically challenging catchments

Hydrological Challenge – Alpine Terrain

Challenge for meteo measurements and their spatial interpolations, especially for precipitation (amounts, temporal and spatial distributions)

Hydrological Challenge – Snow and Glaciers

1'330 km² glaciated areas (3.2 % of total Swiss area) > 40 % of yearly Swiss runoff volumes are from snowmelt

Hydrological Challenge – Lake Regulation

Hydrological Challenge – Hydropower

- 55 % of Swiss energy from hydroelectrical power (rest from atomic power)
- convential hydroelectric dams (reservoirs)
- pumped-storage hydroelectric power stations
- run-of-the-river hydroelectric stations

Hydrological Challenge – Hydropower

Moving on to high-resolution models

- HBV model approach with limited simulation accuracy, especially for hydrologically challenging catchments
- need for integration of more powerful models with better consideration of hydrological processes

- Hydrological Forecasting at FOEN: History and Challenges
 Use of WaSiM within the operational FOEN forecasting system current and future developments
- WaSiM applications for 3 selected river basins: Emme, Rhone and Alpenrhein
- Outlook: model requirements and possible improvements

Hydrological multi-model approach

Ongoing work in 2014

Planned model upgrades in the next years

- Hydrological Forecasting at FOEN: History and Challenges
- Use of WaSiM within the operational FOEN forecasting system: current and future developments
 - WaSiM applications for 3 selected river basins: Emme, Rhone and Alpenrhein
- Outlook: model requirements and possible improvements

WaSiM application for the Emme catchment

- Emme as important inflow into the major river Aare (high relevance for regulation of Bielersee)
- Emme catchment (940 km²) challenging for hydrological models (low performance of HBV appr.)
 - pronounced orography (steep and flat areas)
 - short response times on precipitation
 - poor density of meteo station network

Calibration of the upper Emme catchment

Runoff potential map (Emme catchment)

WaSiM application for the Rhone basin

- About 5'500 km² down to Lake Geneva
- Very pronounced orography
 => challenge for spatial interpolation of meteo data

Spatial interpolation of station-based meteo data

WaSiM application for the Rhone basin

- About 5'500 km² down to Lake Geneva
- Very pronounced orography
 => challenge for spatial interpolation of meteo data
- Processes of snow accumulation, snowmelt and generation of glacier runoff highly important for hydrological modelling => use of the dynamical glacier model

Hydrological Challenge – Glaciers

WaSiM application for the Rhone basin

- About 5'500 km² down to Lake Geneva
- Very pronounced orography
 => challenge for spatial interpolation of meteo data
- Processes of snow accumulation, snow melt and generation of glacier runoff highly important for hydrological modelling => use of the dynamical glacier model
- Natural runoff regime strongly influenced by the management of hydropower stations
 - => implementation of new routing features (extended rules for abstractions and reservoir management)
 - => 15 reservoirs configured in WaSiM and more numerous abstractions
 - => obs. data about reservoir levels or abstraction volumes not available

Reservoirs within the Rhone basin

[Staumauer Grande Dixence; Bild: zvg]

WaSiM User Days 2014 Munich 20./21.02.2014 Karsten Jasper

Defined reservoir rules in WaSiM

Wochentags (Mo bis Fr)

[abstracti	on_rule	_abst:	ractio	n_67]	# powe	er gen	eratic						
4	10	70	91	121	152	182	213	244	274	320	356	366	# Julian Day
0	0	0	0	0	0	0	0	0	0	0	0	0	# Content 1 abstraction for each JD
45e06	18	25	18	18	16	10	10	10	10	18	25	18 :	# Content 2 abstraction for each JD
215e06	18	25	18	18	16	10	10	10	10	18	25	18 :	# Content 3 abstraction for each JD
227e06	50	50	50	50	50	50	50	50	50	50	50	50 +	# Content 4 abstraction for each JD
TargetCap	= 360	360	360	360	360	360	360	360	360	360	360	360	# Limit for abstraction in target area
WeekDays	=12345	12345	12345	12345	12345	12345	12345	12345	12345	12345	12345	12345 :	# week day
start_hour	= 6	6	6	6	6	6	6	6	6	6	6	6	# start hour
stop_hour	=18	18	18	18	18	18	18	18	18	18	18	18 :	# end hour

Wochenende

[abstraction_rule_abstraction_80] # power generation weekend													
4	10	70	91	121	152	182	213	244	274	320	356	366	# Julian Day
0	0	0	0	0	0	0	0	0	0	0	0	0	# Content 1 abstraction for each JD
45e06	8	12	8	8	8	5	5	5	5	8	12	8	# Content 2 abstraction for each JD
215e06	8	12	8	8	8	5	5	5	5	8	12	8	# Content 3 abstraction for each JD
227e06	50	50	50	50	50	50	50	50	50	50	50	50	# Content 4 abstraction for each JD
TargetCap=	360	360	360	360	360	360	360	360	360	360	360	360	# Limit for abstraction in target area
WeekDays =	67	67	67	67	67	67	67	67	67	67	67	67	# week day
start_hour=	= 7	7	7	7	7	7	7	7	7	7	7	7	# start hour
stop_hour =	= 19	19	19	19	19	19	19	19	19	19	19	19	# end hour

Regulation scheme used for Grande Dixence Res.

U

Configured subbasins in the Rhone setup

Calibration results for the Rhone basin

Calibration results for the Rhone basin

WaSiM application for the Alpenrhein basin

- About 6'100 km² down to Lake Constance
- pronounced orography
- Natural runoff regime strongly influenced by hydropower activities

- Processes of snow accumulation, snow melt and generation of glacier runoff important for runoff and water balance modelling
- Spatial interpolation of meteo variables challenging
- Target area located within the overlapping zone of four countries (CH, A, FL, I) => challenge of data preparation (homogenisation)

Configured reservoirs in WaSiM-Alpenrhein

Calibration results for WaSiM-Alpenrhein

- Hydrological Forecasting at FOEN: History and Challenges
- Use of WaSiM within the operational FOEN forecasting system current and future developments
- WaSiM applications for 3 selected river basins: Emme, Rhone and Alpenrhein

Outlook: model requirements and possible improvements

Outlook: model requirements with respect to hydrological forecasting

- Optimal use of the available data basis
 - maps of landuse, soil properties, hydrogeology, etc.
 - meteorological data
 - => different station networks with different data quality and availability (optimal selection of stations)
 - => different grid products (NWP models, radar precipitation, correction factors, e.g. for adjustment of temperature)
 - hydrological data:
 - => different station networks (more control points for model calibration)

Outlook: model requirements with respect to hydrological forecasting

- Optimal use of the available data basis
 - maps of landuse, soil properties, hydrogeology, etc.
 - meteorological data
 - => different station networks with different data quality and availability (optimal selection of stations)
 - => different grid products (NWP models, radar precipitation, correction factors, e.g. for adjustment of temperature)
 - hydrological data:
 - => different station networks (more control points for model calibration)
- Optimal use of lakes (unregulated and regulated)
- Optimal use of channel profiles (geometries)
- Optimal use of glacier data (glacier dynamics)

Swiss Glacier monitoring network

About 120 observed glaciers in the Swiss Alps (length variations, mass balances)

Model validation by measured glacier variations

http://glaciology.ethz.ch/swiss-glaciers/

Consideration of glacier decline

...could be important for continuous modelling

New lakes

Sub-glacial melt

Debris covering

WaSiM User Days 2014 Munich 20./21.02.2014 Karsten Jasper

Outlook: model requirements with respect to runoff forecasting

- optimal use of reservoir and abstraction data from hydropower companies
 - possibility of data assimilation (if data available)

Outlook: model requirements with respect to runoff forecasting

- optimal use of reservoir and abstraction data from hydropower companies
 possibility of data assimilation (if data available)
- optimal simulation of snow cover dynamics incl. snowmelt
 - new or extended approaches (e.g. integration of lateral snow transport)
 - possibility of data assimilation (gridded SWE maps available)
 => challenge: easy to handle and operationally stable

Thanks for your attention!

Questions ?