



# Comparing WaSiM-ETH to HBV-light in Climate Change Impact Assessments – Advantages and Disadvantages

WaSiM User Conference 20. – 21. February 2014

Anne Gädeke<sup>1</sup>, Hagen Koch<sup>2</sup>, Ina Pohle<sup>1</sup> und Uwe Grünewald<sup>1</sup>

1) Department of Hydrology and Water Resources Management, Brandenburg University of Technology

1) Potsdam Institute for Climate Impact Research, RD Climate Impacts and Vulnerability

# **Background of the study**



Climate change impact assessments are nowadays a prerequisite

- for a successful integrated river basin planning and management
- for the development of suitable climate change adaptation strategies

This is especially true for highly anthropogenically impacted catchments such as the Lusatian river catchments of Spree and Schwarze Elster





### **Characteristics of the study catchments**



Low natural water availability in the Spree river catchment (1961-1990):

|                      | Spree | Germany |
|----------------------|-------|---------|
| Precipitation [mm/a] | 587   | 789     |
| Temperature [°C]     | 8.7   | 8.2     |

#### Strong impact due to mining activities

#### **Problems related to:**

- → Water quality (pH in post mining lakes, sulfate and iron)
- $\rightarrow$  Water quantity
- → Natural rainfall-runoff process strongly impacted anthropogenically
- → Calibration on the measured discharge is not possible

### **Selection of study catchments**



### Characteristics of the Weißer Schöps river catchment



- Catchment representative for the conditions in the upper Spree
- Climate: transition zone between continental and maritime climate (runoff regime strongly influenced by evapotranspiration)
- Land use: mostly agriculture
- Geology: mostly joint aquifers with medium to low hydraulic conductivities

#### Climatic conditions (1963-2006)

\*ETP: Turc-Wendling



# Aim of the study

- Calibration of two conceptually different hydrological models (WaSiM-ETH and HBV-light) on measured discharge
- Validation based on discharge and groundwater levels (for WaSiM-ETH)
- Estimation of the uncertainty related to the choice of the hydrological model within climate change impact assessments
  - Mean flow conditions
  - Low flow conditions

# Hydrological models

| Characteristic            | WaSiM-ETH (8.05)                                                                          | HBV-light (3.0)                                                                        |
|---------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Model type                | Process based                                                                             | Conceptual                                                                             |
| Spatial reference         | Fully distributed (uniform grid, 100 grid size)                                           | Lumped                                                                                 |
| Temporal resolution       | Daily                                                                                     | Daily                                                                                  |
| Meteorological data input | Precipitation, temperature, air humidity, wind speed, global radiation, sunshine duration | Precipitation, temperature and potential evapotranspiration                            |
| Interpolation             | Inverse distance approach                                                                 | Manually during pre-processing                                                         |
| ETP/ETA                   | Penman–Monteith approach,<br>ETP is reduced to ETA using the Feddes approach              | ETP is an input data set; ETA is calculated on the basis of soil water storage content |
| Interception              | LAI-dependent Bucket approach                                                             | Not considered                                                                         |
| Infiltration              | Green-Ampt approach modified after Peschke<br>(1987)                                      | Not considered                                                                         |
| Unsaturated zone          | Richards equation parameterized on the basis of van Genuchten (1980)                      | Linear storage approach                                                                |
| Saturated zone            | Integrated 2D groundwater model                                                           | Linear storage approach                                                                |
| Routing model             | Kinematic wave approach based on flow velocity of the Manning-Strickler equation          | Runoff transformation by triangular weighting function                                 |

# **Model parameterization**



# Hydrological model calibration



#### Modified from Gädeke et al. (2013)

# Study approach for climate change impact assessment

#### Temporal focus:

Reference Period: 1963-1992 Scenario Period: 2031-2060

#### **BIAS correction (linear scaling):**

REMO: Temperature, Precipitation, Radiation

CLM: Temperature, Precipitation, Radiation, Humidity (transfer functions)

#### **Downscaling Approach:**

- STAR (100 Realisations of +2K)
- WettReg (10 Realisations of A1B)
- CCLM (2 Realisations of A1B)
- REMO (1 Realisation of A1B)



# **Results**

# **Results – Weißer Schöps : calibration (1999-2001)**





P [mm]

Q [m³/s]

- Only poor agreement based on HBV-light standard parameters
- After automated calibration high performance indicators are achieved



Data source measured discharge: LfULG 2009

|         | HBV-light - Standard Parameters | HBV-light <sub>NSE</sub> | HBV-light <sub>LNSE</sub> | HBV-light <sub>MARE</sub> |
|---------|---------------------------------|--------------------------|---------------------------|---------------------------|
| r²      | 0.16                            | 0.8                      | 0.85                      | 0.8                       |
| NSE     | 0.09                            | 0.76                     | 0.85                      | 0.79                      |
| LNSE    | 0.07                            | 0.79                     | 0.8                       | 0.8                       |
| MBE [%] | -2.94                           | 2.35                     | -0.47                     | -10.8                     |

NSE: Nash Sutcliffe Efficiency LNSE: Nash Sutcliffe Efficiency using logarithmic discharges MARE: Mean absolute relative error MBE: Mass Balance Error

### **Results – Weißer Schöps : calibration (1999-2001)**



# **Results – Weißer Schöps: calibration (1999-2001)**

Särichen

Königshain Holtendorf

- After careful model parameterization, high performance indicators are obtained (attributed to: 2D groundwater approach)
- Automated calibration (PEST) only marginally increases model performance



|         | WaSiM-ETH<br>Standard Parameters<br>(gauge Särichen) | WaSiM-ETH<br>calibrated<br>(gauge Särichen) | WaSiM-ETH<br>Standard Parameters<br>(gauge Königshain) | WaSiM-ETH<br>calibrated<br>(gauge Königshain) | WaSiM-ETH<br>Standard Parameters<br>(gauge Holtendorf) | WaSiM-ETH<br>calibrated<br>(gauge Holtendorf) |
|---------|------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
| r²      | 0.74                                                 | 0.81                                        | 0.40                                                   | 0.6                                           | 0.75                                                   | 0.8                                           |
| NSE     | 0.74                                                 | 0.81                                        | 0.38                                                   | 0.51                                          | 0.74                                                   | 0.8                                           |
| LNSE    | 0.81                                                 | 0.82                                        | 0.79                                                   | 0.87                                          | 0.78                                                   | 0.84                                          |
| MBE [%] | 5.91                                                 | -3.53                                       | -6.97                                                  | -14.26                                        | 0.86                                                   | -5.09                                         |

NSE: Nash Sutcliffe Efficiency LNSE: Nash Sutcliffe Efficiency using logarithmic discharges MARE: Mean absolute relative error MBE: Mass Balance Error

# **Results – Weißer Schöps: calibration (1999-2001)**





# Results – Weißer Schöps: validation (2002-2006)



NSE: Nash Sutcliffe Efficiency LNSE: Nash Sutcliffe Efficiency using logarithmic discharges MARE: Mean absolute relative error MBE: Mass Balance Error

0.66

-0.83

0.54

5.75

0.6

-4.84

-0.09

10.72

calibration period

LNSE

MBE [%]

# Results – Weißer Schöps: validation (2002-2006)

Särichen



|                | WaSiM-ETH<br>Standard Parameters<br>(gauge Särichen) | WaSiM-ETH<br>calibrated<br>(gauge Särichen) | WaSiM-ETH<br>Standard Parameters<br>(gauge Königshain) | WaSiM-ETH<br>calibrated<br>(gauge Königshain) | WaSiM-ETH<br>Standard Parameters<br>(gauge Holtendorf) | WaSiM-ETH<br>calibrated<br>(gauge Holtendorf) |
|----------------|------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
| r <sup>2</sup> | 0.69                                                 | 0.78                                        | 0.51                                                   | 0.58                                          | 0.65                                                   | 0.73                                          |
| NSE            | 0.66                                                 | 0.77                                        | 0.45                                                   | 0.54                                          | 0.59                                                   | 0.68                                          |
| LNSE           | 0.71                                                 | 0.65                                        | 0.56                                                   | 0.56                                          | 0.78                                                   | 0.81                                          |
| MBE [%]        | 9.23                                                 | 5.37                                        | -26.14                                                 | -28.98                                        | -9.80                                                  | -12.28                                        |

NSE: Nash Sutcliffe Efficiency LNSE: Nash Sutcliffe Efficiency using logarithmic discharges MARE: Mean absolute relative error MBE: Mass Balance Error

# **Additional model validation**



Model validation based on monthly runoff (1963-1992)

|         | WaSiM-ETH | HBV-light <sub>NSE</sub> | HBV-light <sub>LNSE</sub> | HBV-light MARE |
|---------|-----------|--------------------------|---------------------------|----------------|
| r²      | 0.98      | 0.83                     | 0.77                      | 0.79           |
| NSE     | 0.95      | 0.81                     | 0.7                       | 0.74           |
| LNSE    | 0.87      | 0.77                     | 0.67                      | 0.78           |
| MBE [%] | -5.31     | -3.48                    | -5.47                     | 2.48           |

NSE: Nash Sutcliffe Efficiency LNSE: Nash Sutcliffe Efficiency using logarithmic discharges MARE: Mean absolute relative error MBE: Mass Balance Error

#### ightarrow WaSiM-ETH performs better outside of the calibration and validation period

### Water balance components





Additional Validation (1963-1992)

- → Differences in the water balance components based on the calibrated models are relatively low for the Weißer Schöps river catchment
- ightarrow For the other two subcatchments, difference are larger



### **Groundwater levels simulated with WaSiM-ETH**

- Is my model "right for the wrong reasons"?
- Is it realistic to match the groundwater levels? (mostly joint aquifers and very simplified model parameterization of 2D groundwater model)

### **Climate change impact analysis**



 $\rightarrow$  Increase in temperature and potential evapotranspiration

→ Opposing precipitation signal (increase in precipitation based on REMO and CCLM, decrease based on STAR and WettReg)



 reference (1963-1992) based on meteorological measurements
scenario (2031-2060)

 meteorological measurements
 REMO (1 realisation)
 CCLM (2 realisations)
 STAR (100 realisations)
 STAR (100 realisations)
 WettReg (10 realisations)

a) WaSiM-ETH
HBV-light

 $\rightarrow$  Large difference in runoff based on choice of downscaling approach (statistical or dynamical)

b

b

a b

а

 $\rightarrow$  Difference between hydrological models relative low

Modified from Gädeke et al. (2013)

### **Climate change impact analysis**



Modified from Gädeke et al. (2013)

#### **Low Flow Analysis**





- WaSiM-ETH reference period
  - HBV-light reference period
- – WaSiM-ETH scenario period
- 🗕 🗕 🗕 HBV-light scenario period

For HBV-light, only the model configuration that was calibrated against the LNSE is displayed

- → Differences between the hydrological models increase for lower flows
- → Simulations based on WaSiM-ETH during the reference period agree better with the measurements (up to 80 % exceedance probability)

# **Low Flow Analysis**

P-value of Wilcoxon test comparing simulated discharge between the hydrological models in the reference (ref: 1963-1992) and scenario period (scen: 2031-2060)

|         |      | Mean yearly discharge | Minimum yearly discharge | AM7*   |
|---------|------|-----------------------|--------------------------|--------|
|         | ref  | 0.83                  | < 0.01                   | < 0.01 |
| REMO    | scen | 0.99                  | < 0.01                   | < 0.01 |
| CLNA    | ref  | 0.55                  | < 0.01                   | < 0.01 |
| CLM     | scen | 0.58                  | < 0.01                   | < 0.01 |
| STAR    | ref  | 0.91                  | < 0.01                   | < 0.01 |
|         | scen | < 0.01                | < 0.01                   | < 0.01 |
| WETTREG | ref  | 0.24                  | < 0.01                   | < 0.01 |
|         | scen | 0.31                  | < 0.01                   | < 0.01 |

\* AM7: annual minimum 7-day mean flow

 $\rightarrow$  Uncertainty related to the hydrological model increases for low flows

# **Summary**

- WaSiM-ETH and HBV-light were calibrated and validated based on measured discharge
- Hydrological models performed similar based on daily discharge for the period 1999-2006 (validation slightly lower compared to validation, for internal gauges based on WaSiM-ETH also slightly lower model performance)
- WaSiM-ETH performed considerably better outside of calibration and validation period (evaluated based on monthly discharge 1963-1992)
- Validation on measured groundwater levels could not be achieved with WaSiM-ETH
- In the climate change impact assessment, hydrological models perform almost equally well when long term average flow conditions are considered
- Uncertainty related to hydrological model increases when low flows are considered
- Larger difference between the results of the hydrological models expected when different approaches for ETP were used

# Conclusion

- Through the application of WaSiM-ETH, a deeper process understanding was gained
- With WaSiM-ETH, internal catchment process can be analysed high relevance for integrated catchment planning and management, also with respect to the formulation of climate change adaptation strategies
- WaSiM-ETH drawback: data requirements, parameterisation effort, calculation time
- HBV-light: suitable to get "fast" mean discharge predictions
- Comparison still very subjective based on the modeller

For the Lusatian river catchments:

- Uncertainty related to climate change impact assessments relatively high based on the climate downscaling approaches used
- Trend analysis of measured meteorological time series have shown that temperature has increased significantly since the 1950
- Precipitation has not changed considerably (→ nature of statistical downscaling approaches needs to be considered)

### References

Gädeke, A., H. Hölzel, H. Koch, I. Pohle, and U. Grünewald (2013), Analysis of uncertainties in the hydrological response of a model-based climate change impact assessment in a subcatchment of the Spree River, Germany, *Hydrological Processes*, early view: 10.1002/hyp.9933.

CORINE Land Cover (2006), European Environment Agency. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006raster-2 (last access: 03.12.2013).

HÜK 200 (2007), Hydrogeologische Übersichtskarte Deutschlands 1:200000, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LFULG). Referat 105, Freiberg.

LfULG (2009), Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden.

**Thanks for your attention!**